Two Sample Hypothesis Tests Sections 21.1, 21.2, 21.3

Lecture 39

Robb T. Koether

Hampden-Sydney College

Thu, Mar 31, 2016

Outline

1 Hypothesis Tests Concerning $\overline{x}_1 - \overline{x}_2$

Outline

1 Hypothesis Tests Concerning $\overline{x}_1 - \overline{x}_2$

Hypothesis Tests Concerning $\overline{x}_1 - \overline{x}_2$

- To test a hypothesis concerning the difference in means between two populations, we follow the same 6 steps as before.
- Only the details have changed.

The Hypotheses – Difference of Means

• The null hypothesis will assert that there is no difference.

$$H_0: \mu_1 = \mu_2$$

Or we could write

$$H_0: \mu_1 - \mu_2 = 0$$

The Hypotheses – Difference of Means

 The alternative hypothesis will be one of the following, depending on the circumstances

$$H_a : \mu_1 \neq \mu_2$$

 $H_a : \mu_1 < \mu_2$
 $H_a : \mu_1 > \mu_2$

The Level of Significance

 The level of significance is handled the same as before. State its value.

The Test Statistic

- The test statistic follows the usual pattern: Observed value minus the expected value (0) divided by the standard error.
- In this case, that gives us

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}.$$

The Hypothesis Test

 The remaining steps are done in the same way as in the earlier examples.

Example (Hypothese Test – Difference of Means)

- I am trying to choose between two wood stoves.
- If all else is equal, I would like to buy the one that gives off less emissions.
- I collected 9 measures from Stove #1:

$$1.25, 0.85, 0.44, 1.49, 1.35, 1.50, 0.86, 1.17, 1.52$$

and 7 measures from Stove #2:

• Test the hypothesis that the emission rates are the same.

Example (Hypothese Test – Difference of Means)

(1) The hypotheses are

$$H_0: \mu_1 = \mu_2$$

 $H_a: \mu_1 \neq \mu_2$

- (2) We will let $\alpha = 0.05$.
- (3) The test statistic is

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Example (Hypothesis Test – Difference of Means)

(4) We have

Sample 1	Sample 2
$\overline{x}_1 = 1.159$	$\overline{x}_2 = 1.397$
$s_1 = 0.3713$	$s_2 = 0.2989$
$n_1 = 9$	$n_2 = 7$

Example (Hypothesis Test – Difference of Means)

(4) Then

$$t = \frac{1.159 - 1.397}{\sqrt{\frac{0.3713^2}{9} + \frac{0.2089^2}{7}}}$$
$$= -\frac{0.238}{0.1468}$$
$$= -1.621.$$

(5)

Do not reject H_0 . We cannot prove that they stoves have different emission rates.

Outline

1 Hypothesis Tests Concerning $\overline{x}_1 - \overline{x}_2$

Assignment

- Read Section 21.1, 21.2, 21.3.
- Check Your Skills: 25.
- Exercises 29(c), 30, 31, 32, 34.